
Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability & Reference counঞng

Chapters 4 & 9

Daniël de Kok

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Moঞvaঞon interior mutability

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature → number mapping

Consider a small data structure to turn features into integers:

use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(HashMap<T, usize>);

impl<T> Default for Numberer<T>
where

T: Eq + Hash,
{

fn default() -> Self {
Numberer(HashMap::new())

}
}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature → number mapping

Consider a small data structure to turn features into integers:

use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(HashMap<T, usize>);

impl<T> Default for Numberer<T>
where

T: Eq + Hash,
{

fn default() -> Self {
Numberer(HashMap::new())

}
}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature → number mapping

impl<T> Numberer<T>
where

T: Eq + Hash,
{

pub fn get(&mut self, val: T) -> usize {
let next_idx = self.0.len();
*self.0.entry(val).or_insert(next_idx)

}
}

let mut numberer: Numberer<&'static str> = Numberer::default();
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("Rust"), 1);
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("again"), 2);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature → number mapping

impl<T> Numberer<T>
where

T: Eq + Hash,
{

pub fn get(&mut self, val: T) -> usize {
let next_idx = self.0.len();
*self.0.entry(val).or_insert(next_idx)

}
}

let mut numberer: Numberer<&'static str> = Numberer::default();
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("Rust"), 1);
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("again"), 2);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably.

Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.

By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.

Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer::get borrows self mutably. Unsaঞsfying, because:

Numberer can be seen as a total funcঞon 𝑇 → ℕ.
By-need index generaঞon is an implementaঞon detail.
Alternaঞve implementaঞon: feature hashing.

The mutable binding trickles up the call chain.
Suppose that Classifier has Numberer as a Celd.
Methods that use Numberer::get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability

Interior mutability is our escape hatch.

Allows you to mutate members without an &mut binding.
Borrowing rules sঞll apply:

Mulঞple immutable borrows; xor
a single mutable borrow.

However: enforced at run-ঞme rather than compile-ঞme.
Be judicious with interior mutability: compile-ঞme errors are nicer.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.

Borrowing rules sঞll apply:
Mulঞple immutable borrows; xor
a single mutable borrow.

However: enforced at run-ঞme rather than compile-ঞme.
Be judicious with interior mutability: compile-ঞme errors are nicer.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.
Borrowing rules sঞll apply:

Mulঞple immutable borrows; xor
a single mutable borrow.

However: enforced at run-ঞme rather than compile-ঞme.
Be judicious with interior mutability: compile-ঞme errors are nicer.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.
Borrowing rules sঞll apply:

Mulঞple immutable borrows; xor
a single mutable borrow.

However: enforced at run-ঞme rather than compile-ঞme.

Be judicious with interior mutability: compile-ঞme errors are nicer.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.
Borrowing rules sঞll apply:

Mulঞple immutable borrows; xor
a single mutable borrow.

However: enforced at run-ঞme rather than compile-ঞme.
Be judicious with interior mutability: compile-ঞme errors are nicer.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Two types of interior mutability

Rust o@ers two data types for interior mutability:

1 Cell: works with values
2 RefCell: works with references

We will Crst explore RefCell, because it Cts most naturally with our
moঞvaঞng example.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Two types of interior mutability

Rust o@ers two data types for interior mutability:

1 Cell: works with values
2 RefCell: works with references

We will Crst explore RefCell, because it Cts most naturally with our
moঞvaঞng example.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: construcঞon

// Create a `RefCell` that owns a `String`.
let cell = RefCell::new("hello RefCell".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("goodbye RefCell".to_string()),
"hello RefCell");

assert_eq!(
// Move the owned `String` out of the `RefCell`. The
// `RefCell` is consumed after this.
cell.into_inner(),
"goodbye RefCell");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: construcঞon

// Create a `RefCell` that owns a `String`.
let cell = RefCell::new("hello RefCell".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("goodbye RefCell".to_string()),
"hello RefCell");

assert_eq!(
// Move the owned `String` out of the `RefCell`. The
// `RefCell` is consumed after this.
cell.into_inner(),
"goodbye RefCell");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: construcঞon

// Create a `RefCell` that owns a `String`.
let cell = RefCell::new("hello RefCell".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("goodbye RefCell".to_string()),
"hello RefCell");

assert_eq!(
// Move the owned `String` out of the `RefCell`. The
// `RefCell` is consumed after this.
cell.into_inner(),
"goodbye RefCell");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

RefCell provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

borrow does not simply return &T.
It needs a data structure with an associated Drop implementaঞon to
keep track of the number of borrows. Why?
To enforce borrowing rules.
Ref implements the Deref trait.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

RefCell provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

borrow does not simply return &T.

It needs a data structure with an associated Drop implementaঞon to
keep track of the number of borrows. Why?
To enforce borrowing rules.
Ref implements the Deref trait.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

RefCell provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

borrow does not simply return &T.
It needs a data structure with an associated Drop implementaঞon to
keep track of the number of borrows. Why?

To enforce borrowing rules.
Ref implements the Deref trait.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

RefCell provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

borrow does not simply return &T.
It needs a data structure with an associated Drop implementaঞon to
keep track of the number of borrows. Why?
To enforce borrowing rules.

Ref implements the Deref trait.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

RefCell provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

borrow does not simply return &T.
It needs a data structure with an associated Drop implementaঞon to
keep track of the number of borrows. Why?
To enforce borrowing rules.
Ref implements the Deref trait.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

let cell = RefCell::new("hello RefCell".to_string());

let borrow1 = cell.borrow();
let borrow2 = cell.borrow();

assert_eq!(borrow1.len(), 13);
assert_eq!(*borrow2, "hello RefCell");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing

let cell = RefCell::new("hello RefCell".to_string());

let borrow1 = cell.borrow();
let borrow2 = cell.borrow();

assert_eq!(borrow1.len(), 13);
assert_eq!(*borrow2, "hello RefCell");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing mutably

let cell = RefCell::new("hello RefCell".to_string());

{
let mut b = cell.borrow_mut();
b.push('!');

}

assert_eq!(cell.into_inner(), "hello RefCell!");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability?

borrow_mut does not
borrow self mutably:

pub fn borrow_mut(&self) -> RefMut<T>

The compile-ঞme borrowing rules are circumvented using unsafe Rust.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability? borrow_mut does not
borrow self mutably:

pub fn borrow_mut(&self) -> RefMut<T>

The compile-ঞme borrowing rules are circumvented using unsafe Rust.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability? borrow_mut does not
borrow self mutably:

pub fn borrow_mut(&self) -> RefMut<T>

The compile-ঞme borrowing rules are circumvented using unsafe Rust.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Enforcement of the borrow rules

The borrow rules are enforced at runঞme:

let cell = RefCell::new("hello RefCell".to_string());

let immutable = cell.borrow();

// Compiles, but panics at runtime with:
// 'already borrowed: BorrowMutError'
let mut mutable = cell.borrow_mut();

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature mapping (updated)

use std::cell::RefCell;
use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(RefCell<HashMap<T, usize>>);

impl<T> Default for Numberer<T>
where
T: Eq + Hash,

{
fn default() -> Self {

Numberer(RefCell::new(HashMap::new()))
// Or: Numberer(Default::default())

}
}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature mapping (updated)

use std::cell::RefCell;
use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(RefCell<HashMap<T, usize>>);

impl<T> Default for Numberer<T>
where
T: Eq + Hash,

{
fn default() -> Self {

Numberer(RefCell::new(HashMap::new()))
// Or: Numberer(Default::default())

}
}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature mapping (updated)

impl<T> Numberer<T>
where

T: Eq + Hash,
{

pub fn get(&self, val: T) -> usize {
let next_idx = self.0.borrow().len();
*self.0.borrow_mut().entry(val).or_insert(next_idx)

}
}

#[test]
fn numberer_test() {

let numberer: Numberer<&'static str> = Numberer::default();
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("Rust"), 1);
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("again"), 2);

}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Feature mapping (updated)

impl<T> Numberer<T>
where

T: Eq + Hash,
{

pub fn get(&self, val: T) -> usize {
let next_idx = self.0.borrow().len();
*self.0.borrow_mut().entry(val).or_insert(next_idx)

}
}

#[test]
fn numberer_test() {

let numberer: Numberer<&'static str> = Numberer::default();
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("Rust"), 1);
assert_eq!(numberer.get("hello"), 0);
assert_eq!(numberer.get("again"), 2);

}
Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Introducঞon

Cell is value-oriented.

Does not need/implement run-ঞme borrows checking.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Introducঞon

Cell is value-oriented.
Does not need/implement run-ঞme borrows checking.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: construcঞon

// Create a `Cell` that owns a `String`.
let cell = Cell::new("Rustic".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("cells".to_string()),
"Rustic");

// Set the value. Drops the owned value.
cell.set("are mutable".to_string());

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: construcঞon

// Create a `Cell` that owns a `String`.
let cell = Cell::new("Rustic".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("cells".to_string()),
"Rustic");

// Set the value. Drops the owned value.
cell.set("are mutable".to_string());

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: construcঞon

// Create a `Cell` that owns a `String`.
let cell = Cell::new("Rustic".to_string());

assert_eq!(
// Replace the owned `String` by another owned `String`,
// the original owned data is returned.
cell.replace("cells".to_string()),
"Rustic");

// Set the value. Drops the owned value.
cell.set("are mutable".to_string());

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: construcঞon

assert_eq!(
// Move the owned `String` out of the `Cell`. The
// `Cell` is consumed after this.
cell.into_inner(),
"cells");

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: Copy types

Cell implements a get method for copy types, that returns a copy of the
current value:

let cell = Cell::new(5);
assert_eq!(cell.get(), 5);
cell.set(6);
assert_eq!(cell.get(), 6);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: Default types

Cell implements a take method for Default types. It is equivalent to
replacing the value by Default::default():

let cell = Cell::new(vec![1, 2, 3]);

assert_eq!(
// Move the vector [1, 2, 3] out of the cell,
// replace it by an empty `Vec`.
cell.take(),
vec![1, 2, 3]);

assert_eq!(
// Unwrap the inner vector [].
cell.into_inner(),
vec![]);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: Default types

Cell implements a take method for Default types. It is equivalent to
replacing the value by Default::default():

let cell = Cell::new(vec![1, 2, 3]);

assert_eq!(
// Move the vector [1, 2, 3] out of the cell,
// replace it by an empty `Vec`.
cell.take(),
vec![1, 2, 3]);

assert_eq!(
// Unwrap the inner vector [].
cell.into_inner(),
vec![]);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

In-class assignment

Implement Numberer with Cell interior mutability.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:

Wraps a value of type T.
Provides a get method that returns *mut T.
Users of UnsafeCell should enforce the borrowing rules.

Cell wraps UnsafeCell:
Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:
Wraps a value of type T.

Provides a get method that returns *mut T.
Users of UnsafeCell should enforce the borrowing rules.

Cell wraps UnsafeCell:
Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:
Wraps a value of type T.
Provides a get method that returns *mut T.

Users of UnsafeCell should enforce the borrowing rules.
Cell wraps UnsafeCell:

Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:
Wraps a value of type T.
Provides a get method that returns *mut T.
Users of UnsafeCell should enforce the borrowing rules.

Cell wraps UnsafeCell:
Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:
Wraps a value of type T.
Provides a get method that returns *mut T.
Users of UnsafeCell should enforce the borrowing rules.

Cell wraps UnsafeCell:

Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Cell: how does it work?

Core primiঞve for interior mutability: UnsafeCell:
Wraps a value of type T.
Provides a get method that returns *mut T.
Users of UnsafeCell should enforce the borrowing rules.

Cell wraps UnsafeCell:
Provides safety by not providing references to the wrapped data.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

The wrapped value is stored in an UnsafeCell.

A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

BorrowFlag is a usize with one of the following values:

0: no borrows
!0: a mutable borrow
[1, MAX-1]: N immutable borrows

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

The wrapped value is stored in an UnsafeCell.

A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

BorrowFlag is a usize with one of the following values:

0: no borrows
!0: a mutable borrow
[1, MAX-1]: N immutable borrows

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

The wrapped value is stored in an UnsafeCell.

A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

BorrowFlag is a usize with one of the following values:

0: no borrows
!0: a mutable borrow
[1, MAX-1]: N immutable borrows

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

The wrapped value is stored in an UnsafeCell.

A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

BorrowFlag is a usize with one of the following values:

0: no borrows
!0: a mutable borrow
[1, MAX-1]: N immutable borrows

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

The wrapped value is stored in an UnsafeCell.

A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

BorrowFlag is a usize with one of the following values:

0: no borrows
!0: a mutable borrow
[1, MAX-1]: N immutable borrows

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RefCell: how does it work?

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

borrow() permi�ed when borrow != !0
sets borrow to borrow + 1

borrow_mut() permi�ed when borrow is 0
sets borrow to !0

When a borrow()/borrow_mut() is not permi�ed → panic.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Introducঞon

For some data, there is no clear single owner.

Examples:
A model that is used by mulঞple views in a GUI applicaঞon.
Immutable data structures with sharing.
Graphs (but watch out for cycles!).

Rust provides shared ownership with reference counঞng throug Rc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Introducঞon

For some data, there is no clear single owner.
Examples:

A model that is used by mulঞple views in a GUI applicaঞon.
Immutable data structures with sharing.
Graphs (but watch out for cycles!).

Rust provides shared ownership with reference counঞng throug Rc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Introducঞon

For some data, there is no clear single owner.
Examples:

A model that is used by mulঞple views in a GUI applicaঞon.
Immutable data structures with sharing.
Graphs (but watch out for cycles!).

Rust provides shared ownership with reference counঞng throug Rc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.

Data is stored with a counter:
Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.

Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.

The data is dropped when the counter reaches 0.
Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.

Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Reference counঞng

Reference counঞng is a form of garbage collecঞon.
Data is stored with a counter:

Creaঞng a new reference increments the counter.
Dropping a reference decrements the counter.
The data is dropped when the counter reaches 0.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collecঞon in e.g. (C)Python.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

16 16
capacity

length

strong count

weak count

I will be shared

0

a

1

let a = Rc::new("I will be shared".to_string());
assert_eq!(Rc::strong_count(&a), 1);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

16 16
capacity

length

strong count

weak count

I will be shared

0

a

1

b

2

let b = a.clone();
assert_eq!(Rc::strong_count(&a), 2);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

16 16
capacity

length

strong count

weak count

I will be shared

0

a

1

b

2

c

3

let c = a.clone();
assert_eq!(Rc::strong_count(&a), 3);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

16 16
capacity

length

strong count

weak count

I will be shared

0

a

1

c

32

drop(b);
assert_eq!(Rc::strong_count(&a), 2);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

16 16
capacity

length

strong count

weak count

I will be shared

0

a

1

drop(c);
assert_eq!(Rc::strong_count(&a), 1);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Shared ownership through Rc

stack
frame

heap

heap

spacer

drop(a);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Using Rc data

Rc implements Deref:

let a = Rc::new("I will be shared".to_string());
let b = a.clone();
assert_eq!(b.len(), 16);

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Combining Rc and RefCell

Rc<T> is immutable (unless the reference count is 1).

Wrapping RefCell<T> in Rc gives us mutable reference-counted
memory:

let s = "I will be shared".to_string();
let a: Rc<RefCell<String>> = Rc::new(RefCell::new(s));
let b = a.clone();
b.borrow_mut().push_str("... Done!");
assert_eq!(*a.borrow(), "I will be shared... Done!");

Similarly wrapping in Rc<T> in RefCell gives us reference counঞng
pointers that can be updated.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Combining Rc and RefCell

Rc<T> is immutable (unless the reference count is 1).

Wrapping RefCell<T> in Rc gives us mutable reference-counted
memory:

let s = "I will be shared".to_string();
let a: Rc<RefCell<String>> = Rc::new(RefCell::new(s));
let b = a.clone();
b.borrow_mut().push_str("... Done!");
assert_eq!(*a.borrow(), "I will be shared... Done!");

Similarly wrapping in Rc<T> in RefCell gives us reference counঞng
pointers that can be updated.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Combining Rc and RefCell

Rc<T> is immutable (unless the reference count is 1).

Wrapping RefCell<T> in Rc gives us mutable reference-counted
memory:

let s = "I will be shared".to_string();
let a: Rc<RefCell<String>> = Rc::new(RefCell::new(s));
let b = a.clone();
b.borrow_mut().push_str("... Done!");
assert_eq!(*a.borrow(), "I will be shared... Done!");

Similarly wrapping in Rc<T> in RefCell gives us reference counঞng
pointers that can be updated.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Watch out: cycles

Using Rc with RefCell makes it possible to create cycles in memory.

#[derive(Debug)]
enum List {

Cons(usize, RefCell<Rc<List>>),
Nil,

}

let a = Rc::new(Cons(1, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));

if let Cons(_, cell) = &*a {
*cell.borrow_mut() = b.clone();

}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Watch out: cycles

Using Rc with RefCell makes it possible to create cycles in memory.

#[derive(Debug)]
enum List {

Cons(usize, RefCell<Rc<List>>),
Nil,

}

let a = Rc::new(Cons(1, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));

if let Cons(_, cell) = &*a {
*cell.borrow_mut() = b.clone();

}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Watch out: cycles

Using Rc with RefCell makes it possible to create cycles in memory.

#[derive(Debug)]
enum List {

Cons(usize, RefCell<Rc<List>>),
Nil,

}

let a = Rc::new(Cons(1, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));

if let Cons(_, cell) = &*a {
*cell.borrow_mut() = b.clone();

}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Watch out: cycles

Using Rc with RefCell makes it possible to create cycles in memory.

#[derive(Debug)]
enum List {

Cons(usize, RefCell<Rc<List>>),
Nil,

}

let a = Rc::new(Cons(1, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));

if let Cons(_, cell) = &*a {
*cell.borrow_mut() = b.clone();

}

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RamiCcaঞons

Cycles are not deallocated!

Some funcঞons are not well-behaved on memory with cycles.
E.g. the println macro will panic with a stack overYow.

Cycles can be broken with weak references.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RamiCcaঞons

Cycles are not deallocated!
Some funcঞons are not well-behaved on memory with cycles.

E.g. the println macro will panic with a stack overYow.

Cycles can be broken with weak references.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

RamiCcaঞons

Cycles are not deallocated!
Some funcঞons are not well-behaved on memory with cycles.

E.g. the println macro will panic with a stack overYow.
Cycles can be broken with weak references.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.

Be judicious with these three data structures:
Guarantees change go from compile-ঞme to run-ঞme.
Rc + RefCell can create cycles.
Try with exterior mutability and single owner Crst.

Cell and RefCell references cannot be shared between threads.
Rc cannot be shared nor send between threads.
There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.
Be judicious with these three data structures:

Guarantees change go from compile-ঞme to run-ঞme.
Rc + RefCell can create cycles.
Try with exterior mutability and single owner Crst.

Cell and RefCell references cannot be shared between threads.
Rc cannot be shared nor send between threads.
There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.
Be judicious with these three data structures:

Guarantees change go from compile-ঞme to run-ঞme.
Rc + RefCell can create cycles.
Try with exterior mutability and single owner Crst.

Cell and RefCell references cannot be shared between threads.

Rc cannot be shared nor send between threads.
There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.
Be judicious with these three data structures:

Guarantees change go from compile-ঞme to run-ঞme.
Rc + RefCell can create cycles.
Try with exterior mutability and single owner Crst.

Cell and RefCell references cannot be shared between threads.
Rc cannot be shared nor send between threads.

There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9

Interior mutability & Reference counঞng



Moঞvaঞon interior mutability RefCell Cell Reference counঞng Conclusion

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.
Be judicious with these three data structures:

Guarantees change go from compile-ঞme to run-ঞme.
Rc + RefCell can create cycles.
Try with exterior mutability and single owner Crst.

Cell and RefCell references cannot be shared between threads.
Rc cannot be shared nor send between threads.
There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9

Interior mutability & Reference counঞng


	Motivation interior mutability
	RefCell
	Cell
	Reference counting
	Conclusion

