Interior mutability & Reference counting

Chapters 4 & 9

Daniél de Kok

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
@00000

Motivation interior mutability

pters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
0O@0000

Feature — number mapping

Consider a small data structure to turn features into integers:

use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(HashMap<T, usize>);

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
0O@0000

Feature — number mapping

Consider a small data structure to turn features into integers:

use std::collections::HashMap;
use std::hash::Hash;

pub struct Numberer<T>(HashMap<T, usize>);
impl<T> Default for Numberer<T>
where

T: Eq + Hash,

fn default() -> Self {
Numberer (HashMap: :new())

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
[e]e] lele]e}

Feature — number mapping

impl<T> Numberer<T>
where
T: Eq + Hash,

{
pub fn get(&mut self, val: T) -> usize {
let next_idx = self.0.len();
*self.0.entry(val).or_insert(next_idx)
}
}

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
[e]e] lele]e}

Feature — number mapping

impl<T> Numberer<T>
where
T: Eq + Hash,

{
pub fn get(&mut self, val: T) -> usize {
let next_idx = self.0.len();
*self.0.entry(val).or_insert(next_idx)
}
}

let mut numberer: Numberer<&'static str> = Numberer::default();
assert_eq! (numberer.get("hello"), 0);
assert_eq! (numberer.get("Rust"), 1);
assert_eq! (numberer.get("hello"), 0);
assert_eq! (numberer.get("again"), 2);

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer: :get borrows self mutably.

Chapters 4 & 9

y & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize

Numberer: : get borrows self mutably. Unsatisfying, because:

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize
Numberer: : get borrows self mutably. Unsatisfying, because:

m Numberer can be seen as a total function T — N.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize
Numberer: : get borrows self mutably. Unsatisfying, because:

m Numberer can be seen as a total function 7" — N.
m By-need index generation is an implementation detail.
m Alternative implementation: feature hashing.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize
Numberer: : get borrows self mutably. Unsatisfying, because:

m Numberer can be seen as a total function 7" — N.
m By-need index generation is an implementation detail.
m Alternative implementation: feature hashing.

m The mutable binding trickles up the call chain.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize
Numberer: : get borrows self mutably. Unsatisfying, because:

m Numberer can be seen as a total function 7" — N.
m By-need index generation is an implementation detail.
m Alternative implementation: feature hashing.
m The mutable binding trickles up the call chain.
m Suppose that Classifier has Numberer as a field.
m Methods that use Numberer: : get also need to take &mut self.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
000e00

Mutability

pub fn get(&mut self, val: T) -> usize
Numberer: : get borrows self mutably. Unsatisfying, because:

m Numberer can be seen as a total function 7" — N.
m By-need index generation is an implementation detail.
m Alternative implementation: feature hashing.
m The mutable binding trickles up the call chain.
m Suppose that Classifier has Numberer as a field.
m Methods that use Numberer: : get also need to take &mut self.

We need an escape hatch!

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
O0000e0

Interior mutability

m Interior mutability is our escape hatch.

Chapters 4 & 9

& Reference counting

Motivation interior mutability
O0000e0

Interior mutability

m Interior mutability is our escape hatch.
m Allows you to mutate members without an &mut binding.

Chapters 4 & 9

y & Reference counting

Motivation interior mutability
O0000e0

Interior mutability

m Interior mutability is our escape hatch.
m Allows you to mutate members without an &mut binding.

m Borrowing rules still apply:
m Multiple immutable borrows; xor
m a single mutable borrow.

Chapters 4 & 9

y & Reference counting

Motivation interior mutability
O0000e0

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.

Borrowing rules still apply:
m Multiple immutable borrows; xor
m a single mutable borrow.

m However: enforced at run-time rather than compile-time.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
O0000e0

Interior mutability

Interior mutability is our escape hatch.
Allows you to mutate members without an &mut binding.
Borrowing rules still apply:
m Multiple immutable borrows; xor
m asingle mutable borrow.
However: enforced at run-time rather than compile-time.
Be judicious with interior mutability: compile-time errors are nicer.

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
O0000e

Two types of interior mutability

Rust offers two data types for interior mutability:

Cell: works with values
RefCell: works with references

Chapters 4 & 9
Interior mutability & Reference counting

Motivation interior mutability
O0000e

Two types of interior mutability

Rust offers two data types for interior mutability:

Cell: works with values
RefCell: works with references

We will first explore RefCel1, because it fits most naturally with our
motivating example.

Chapters 4 & 9
Interior mutability & Reference counting

RefCell

900000000

RefCell

pters 4 & 9
Interior mutability & Reference counting

RefCell
0®0000000

RefCell: construction

// Create a ‘RefCell’ that owns a ‘String’.
let cell = RefCell::new("hello RefCell".to_string());

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
0®0000000

RefCell: construction

// Create a ‘RefCell’ that owns a ‘String’.
let cell = RefCell::new("hello RefCell".to_string());

assert_eq! (
// Replace the owned 'String’ by another owned ‘String’,
// the original owned data is returned.
cell.replace("goodbye RefCell".to_string()),
"hello RefCell");

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
0®0000000

RefCell: construction

// Create a ‘RefCell’ that owns a ‘String’.
let cell = RefCell::new("hello RefCell".to_string());

assert_eq! (
// Replace the owned 'String’ by another owned ‘String’,
// the original owned data is returned.
cell.replace("goodbye RefCell".to_string()),
"hello RefCell");

assert_eq!/(
// Move the owned 'String’ out of the ‘RefCell’. The
// ‘RefCell’' is consumed after this.
cell.into_inner(),
"goodbye RefCell");

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00®000000

RefCell: borrowing

RefCe'll provides the borrow method to borrow the wrapped value:

pub fn borrow(&self) -> Ref<T>

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00®000000

RefCell: borrowing

RefCe'll provides the borrow method to borrow the wrapped value:
pub fn borrow(&self) -> Ref<T>

m borrow does not simply return &T.

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00®000000

RefCell: borrowing

RefCe'll provides the borrow method to borrow the wrapped value:
pub fn borrow(&self) -> Ref<T>

m borrow does not simply return &T.
m It needs a data structure with an associated Drop implementation to
keep track of the number of borrows. Why?

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00®000000

RefCell: borrowing

RefCe'll provides the borrow method to borrow the wrapped value:
pub fn borrow(&self) -> Ref<T>

m borrow does not simply return &T.
m It needs a data structure with an associated Drop implementation to

keep track of the number of borrows. Why?
m To enforce borrowing rules.

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00®000000

RefCell: borrowing

RefCe'll provides the borrow method to borrow the wrapped value:
pub fn borrow(&self) -> Ref<T>

m borrow does not simply return &T.
m It needs a data structure with an associated Drop implementation to

keep track of the number of borrows. Why?
m To enforce borrowing rules.
m Ref implements the Deref trait.

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000@00000

RefCell: borrowing

let cell = RefCell::new("hello RefCell".to_string());

let borrowl = cell.borrow();
let borrow2 = cell.borrow();

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000@00000

RefCell: borrowing

let cell = RefCell::new("hello RefCell".to_string());

let borrowl = cell.borrow();
let borrow2 = cell.borrow();

assert_eq! (borrowl.len(), 13);
assert_eq! (xborrow2, "hello RefCell");

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
0000®0000

RefCell: borrowing mutably

let cell = RefCell::new("hello RefCell".to_string());

let mut b = cell.borrow_mut();
b.push('!"');

assert_eq! (cell.into_inner(), "hello RefCell!");

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00000@000

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability?

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00000@000

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability? borrow_mut does not
borrow self mutably:

pub fn borrow_mut(&self) -> RefMut<T>

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
00000@000

RefCell: borrowing mutably (2)

How does RefCell bring interior mutability? borrow_mut does not
borrow self mutably:

pub fn borrow_mut(&self) -> RefMut<T>

The compile-time borrowing rules are circumvented using unsafe Rust.

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000000800

Enforcement of the borrow rules

The borrow rules are enforced at runtime:

let cell = RefCell::new("hello RefCell".to_string());
let immutable = cell.borrow();
// Compiles, but panics at runtime with:

// 'already borrowed: BorrowMutError'
let mut mutable = cell.borrow_mut();

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000000080

Feature mapping (updated)

use std::cell::RefCell;
use std::collections: :HashMap;
use std::hash::Hash;

pub struct Numberer<T>(RefCell<HashMap<T, usize>>);

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000000080

Feature mapping (updated)

use std::cell::RefCell;
use std::collections: :HashMap;
use std::hash::Hash;

pub struct Numberer<T>(RefCell<HashMap<T, usize>>);
impl<T> Default for Numberer<T>

where
T: Eq + Hash,

{
fn default() -> Self {
Numberer (RefCell: :new(HashMap: :new()))
// Or: Numberer (Default: :default())
}
}

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000000000

Feature mapping (updated)

impl<T> Numberer<T>
where
T: Eq + Hash,

{
pub fn get(&self, val: T) -> usize {
let next_idx = self.0.borrow().len();
*self.0.borrow_mut().entry(val).or_insert(next_idx)
}
3

Chapters 4 & 9
Interior mutability & Reference counting

RefCell
000000000

Feature mapping (updated)

impl<T> Numberer<T>
where
T: Eq + Hash,

{
pub fn get(&self, val: T) -> usize {
let next_idx = self.0.borrow().len();
*self.0.borrow_mut().entry(val).or_insert(next_idx)
}
3
#[test]

fn numberer_test() {
let numberer: Numberer<&'static str> = Numberer::default();
assert_eq! (numberer.get("hello"), 0);
assert_eq! (numberer.get("Rust"), 1);
assert_eq! (numberer.get("hello"), 0);
assert_eq! (numberer.get("again"), 2);

Chapters 4 & 9
Interior mutability & Reference counting

Cell

9000000000

Cell

apters 4 & 9

Interior mutability & Reference counting

Cell
0®00000000

Introduction

m Cellis value-oriented.

Chapters 4 & 9

& Reference counting

Cell
0®00000000

Introduction

m Cellis value-oriented.
m Does not need/implement run-time borrows checking.

Chapters 4 & 9

& Reference counting

Cell
0000000000

Cell: construction

// Create a “Cell’ that owns a 'String’.
let cell = Cell::new("Rustic".to_string());

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

Cell: construction

// Create a “Cell’ that owns a 'String’.
let cell = Cell::new("Rustic".to_string());

assert_eq!/(
// Replace the owned 'String’ by another owned 'String’,
// the original owned data is returned.
cell.replace("cells".to_string()),
"Rustic");

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

Cell: construction

// Create a “Cell’ that owns a 'String’.
let cell = Cell::new("Rustic".to_string());

assert_eq!/(
// Replace the owned 'String’ by another owned 'String’,
// the original owned data is returned.
cell.replace("cells".to_string()),
"Rustic");

// Set the value. Drops the owned value.
cell.set("are mutable".to_string());

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0008000000

Cell: construction

assert_eq!/(
// Move the owned ‘String’ out of the “Cell’. The
// ‘Cell' 1is consumed after this.
cell.into_inner(),
"cells");

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

Cell: Copy types

Cell implements a get method for copy types, that returns a copy of the
current value:

let cell = Cell::new(5);
assert_eq!(cell.get(), 5);
cell.set(6);

assert_eq! (cell.get(), 6);

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000080000

Cell: Defau'lt types

Cell implements a take method for Default types. It is equivalent to
replacing the value by Default: :default():

let cell = Cell::new(vec![1, 2, 3]);

assert_eq!/(
// Move the vector [1, 2, 3] out of the cell,
// replace it by an empty "Vec'.
cell.take(),
vec![1, 2, 3]1);

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000080000

Cell: Defau'lt types

Cell implements a take method for Default types. It is equivalent to
replacing the value by Default: :default():

let cell = Cell::new(vec![1, 2, 3]);

assert_eq!/(
// Move the vector [1, 2, 3] out of the cell,
// replace it by an empty "Vec'.
cell.take(),
vec![1, 2, 3]1);

assert_eq!/(
// Unwrap the inner vector [].
cell.into_inner(),
vec![1);

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000008000

In-class assignment

Implement Numberer with Cell interior mutability.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:
m Wraps a value of type T.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:
m Wraps a value of type T.
m Provides a get method that returns xmut T.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:
m Wraps a value of type T.
m Provides a get method that returns xmut T.
m Users of UnsafeCell should enforce the borrowing rules.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:
m Wraps a value of type T.
m Provides a get method that returns xmut T.
m Users of UnsafeCell should enforce the borrowing rules.

m CellwrapsUnsafeCell:

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000800

Cell: how does it work?

m Core primitive for interior mutability: UnsafeCell:
m Wraps a value of type T.
m Provides a get method that returns xmut T.
m Users of UnsafeCell should enforce the borrowing rules.
m CellwrapsUnsafeCell:
m Provides safety by not providing references to the wrapped data.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

RefCell: how does it work?

m The wrapped value is stored in an UnsafeCell.

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

RefCell: how does it work?

m The wrapped value is stored in an UnsafeCell.

m A cell is used to keep track of borrows:

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

RefCell: how does it work?

m The wrapped value is stored in an UnsafeCell.

m A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

RefCell: how does it work?

m The wrapped value is stored in an UnsafeCell.

m A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

m BorrowFlag is a us-ize with one of the following values:

m 0O: no borrows
m ! 0: a mutable borrow
m [1, MAX-1]: Nimmutable borrows

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000000

RefCell: how does it work?

m The wrapped value is stored in an UnsafeCell.

m A cell is used to keep track of borrows:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

m BorrowFlag is a us-ize with one of the following values:

m 0O: no borrows
m ! 0: a mutable borrow
m [1, MAX-1]: Nimmutable borrows

Chapters 4 & 9
Interior mutability & Reference counting

Cell
0000000008

RefCell: how does it work?

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

m borrow() permitted when borrow != 10
m setsborrowtoborrow + 1

m borrow_mut () permitted when borrow is O
m sets borrowto !0

m When aborrow()/borrow_mut () is not permitted — panic.

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
9000000000000

Reference counting

apters 4 & 9

ility & Reference counting

Reference counting
0®@00000000000

Introduction

m For some data, there is no clear single owner.

Chapters 4 & 9

& Reference counting

Reference counting
0®@00000000000

Introduction

m For some data, there is no clear single owner.

m Examples:
m A model that is used by multiple views in a GUI application.
m Immutable data structures with sharing.
m Graphs (but watch out for cycles!).

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0®@00000000000

Introduction

m For some data, there is no clear single owner.
m Examples:
m A model that is used by multiple views in a GUI application.
m Immutable data structures with sharing.
m Graphs (but watch out for cycles!).
m Rust provides shared ownership with reference counting throug Rc.

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.
m Data is stored with a counter:

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.
m Data is stored with a counter:
m Creating a new reference increments the counter.

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.
m Data is stored with a counter:
m Creating a new reference increments the counter.
m Dropping a reference decrements the counter.

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.
m Data is stored with a counter:
m Creating a new reference increments the counter.
m Dropping a reference decrements the counter.
m The data is dropped when the counter reaches O.

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000000

Reference counting

m Reference counting is a form of garbage collection.
m Data is stored with a counter:
m Creating a new reference increments the counter.
m Dropping a reference decrements the counter.
m The data is dropped when the counter reaches O.

m Reference in this context is not to be confused with Rust’s references.

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000000

Reference counting

Reference counting is a form of garbage collection.
m Data is stored with a counter:

m Creating a new reference increments the counter.
m Dropping a reference decrements the counter.

m The data is dropped when the counter reaches O.

Reference in this context is not to be confused with Rust’s references.
Standard form of garbage collection in e.g. (C)Python.

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
000®@000000000

Shared ownership through Rc

stack
frame

heap

heap

let a = Rc::new("I will be shared".to_string());
assert_eq! (Rc::strong_count(&a), 1);

Chapters 4 & 9

y & Reference counting

Reference counting
0000800000000

Shared ownership through Rc

stack
frame

heap

heap

let b = a.clone();
assert_eq! (Rc::strong_count(&a), 2);

Chapters 4 & 9

& Reference counting

Reference counting
00000®0000000

Shared ownership through Rc

stack
frame

heap

heap

let ¢ = a.clone();
assert_eq! (Rc::strong_count(&a), 3);

Chapters 4 & 9

& Reference counting

Reference counting
0000008000000

Shared ownership through Rc

drop(b);
assert_eq! (Rc::strong_count(&a), 2);

Chapters 4 & 9

& Reference counting

Reference counting
0000000e00000

Shared ownership through Rc

stack
frame

heap

heap

drop(c);
assert_eq! (Rc::strong_count(&a), 1);

Chapters 4 & 9

& Reference counting

Reference counting
00000000 e0000

Shared ownership through Rc

stack
frame

heap

drop(a);

Chapters 4 & 9

& Reference counting

Reference counting
0000000008000

Using Rc data

Rc implements Deref:
let a = Rc::new("I will be shared".to_string());

let b = a.clone();
assert_eq!(b.len(), 16);

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000800

Combining Rc and RefCell

m Rc<T> is immutable (unless the reference count is 1).

Chapters 4 & 9

y & Reference counting

Reference counting
0000000000800

Combining Rc and RefCell

m Rc<T> is immutable (unless the reference count is 1).

m Wrapping RefCel1<T> in Rc gives us mutable reference-counted
memory:

let s = "I will be shared".to_string();

let a: Rc<RefCell<String>> = Rc::new(RefCell::new(s));
let b = a.clone();

b.borrow_mut().push_str("... Done!");

assert_eq! (*a.borrow(), "I will be shared... Done!'");

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000800

Combining Rc and RefCell

m Rc<T> is immutable (unless the reference count is 1).

m Wrapping RefCel1<T> in Rc gives us mutable reference-counted
memory:
let s = "I will be shared".to_string();
let a: Rc<RefCell<String>> = Rc::new(RefCell::new(s));
let b = a.clone();

b.borrow_mut().push_str("... Done!");
assert_eq! (*a.borrow(), "I will be shared... Done!'");

m Similarly wrapping in Rc<T> in RefCell gives us reference counting
pointers that can be updated.

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000080

Watch out: cycles

Using Rc with RefCel1l makes it possible to create cycles in memory.

Chapters 4 & 9

& Reference counting

Reference counting
0000000000080

Watch out: cycles

Using Rc with RefCel1l makes it possible to create cycles in memory.

#[derive(Debug)]

enum List {
Cons(usize, RefCell<Rc<List>>),
Nil,

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000080

Watch out: cycles

Using Rc with RefCel1l makes it possible to create cycles in memory.

#[derive(Debug)]

enum List {
Cons(usize, RefCell<Rc<List>>),
Nil,

let a = Rc::new(Cons(l, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
0000000000080

Watch out: cycles

Using Rc with RefCel1l makes it possible to create cycles in memory.

#[derive(Debug)]

enum List {
Cons(usize, RefCell<Rc<List>>),
Nil,

let a = Rc::new(Cons(l, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(2, RefCell::new(a.clone())));
if let Cons(_, cell) = &xa {

*cell.borrow_mut() = b.clone();

}

Chapters 4 & 9
Interior mutability & Reference counting

Reference counting
000000000000 e

Ramifications

m Cycles are not deallocated!

Chapters 4 & 9

& Reference counting

Reference counting
000000000000 e

Ramifications

m Cycles are not deallocated!

m Some functions are not well-behaved on memory with cycles.
m E.g. the println macro will panic with a stack overflow.

Chapters 4 & 9

y & Reference counting

Reference counting
000000000000 e

Ramifications

m Cycles are not deallocated!

m Some functions are not well-behaved on memory with cycles.
m E.g. the println macro will panic with a stack overflow.

m Cycles can be broken with weak references.

Chapters 4 & 9

y & Reference counting

Conclusion

[Je]

Conclusion

apters 4 & 9
Interior mutability & Reference counting

Conclusion
oe

Conclusion

m Use Cell or RefCell for interior mutability.
m Use Rc for shared ownership.

Chapters 4 & 9
Interior mutability & Reference counting

Conclusion
oe

Conclusion

m Use Cell or RefCell for interior mutability.
m Use Rc for shared ownership.

m Be judicious with these three data structures:
m Guarantees change go from compile-time to run-time.
m Rc + RefCell can create cycles.
m Try with exterior mutability and single owner first.

Chapters 4 & 9
Interior mutability & Reference counting

Conclusion
oe

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.

Be judicious with these three data structures:
m Guarantees change go from compile-time to run-time.
m Rc + RefCell can create cycles.
m Try with exterior mutability and single owner first.

m Celland RefCell references cannot be shared between threads.

Chapters 4 & 9
Interior mutability & Reference counting

Conclusion
oe

Conclusion

Use Cell or RefCell for interior mutability.
Use Rc for shared ownership.
Be judicious with these three data structures:
m Guarantees change go from compile-time to run-time.
m Rc + RefCell can create cycles.
m Try with exterior mutability and single owner first.
Cell and RefCell references cannot be shared between threads.
Rc cannot be shared nor send between threads.

Chapters 4 & 9
Interior mutability & Reference counting

Conclusion
oe

Conclusion

m Use Cell or RefCell for interior mutability.
m Use Rc for shared ownership.

m Be judicious with these three data structures:
m Guarantees change go from compile-time to run-time.
m Rc + RefCell can create cycles.
m Try with exterior mutability and single owner first.

m Celland RefCell references cannot be shared between threads.

m Rc cannot be shared nor send between threads.

m There are thread-safe counterparts, such as Mutex, RwLock, and
Arc.

Chapters 4 & 9
Interior mutability & Reference counting

	Motivation interior mutability
	RefCell
	Cell
	Reference counting
	Conclusion

